
 1

Implementing the Update Propagation Strategies on Replicated Database

Su Su Mon, Dr.Khine Khine Oo
University of Computer Studies, Yangon

baby.babybu@gmail.com, k2Khine@gmail.com

 Abstract

 A distributed database is a database with

its data elements stored at several sites of a
computer network. Certain data items may be
redundantly stored at more than one site for
reliability reasons. A replicated database is a
distributed database in which multiple copies of the
same data items are stored at different sites.
Distributed applications frequently use replication
as a means to achieve higher level of performance,
reliability and availability. Replication is a
technique for automatically maintaining the
availability of data despite server failures. If data
are replicated at two or more failure-independent
servers then client software may be able to access
data at alternative servers. The basic problem with
data replication is update propagation. In this
paper, we propose a system that handles replica
updates in a distributed database system called Lazy
and Eager. This system will be implemented by
using C#.NET and Access database.

 Keywords: Replication, Update Propagation,
Eager Replication, Lazy Replication

1. Introduction

 Nowadays, most businesses are organized with
distributed pattern. For instance, main office as server
site and branch offices as slave sites. For so, data
about the organization becomes necessary to store
redundantly. Moreover, information about the
organization needs for autonomy to all offices. It
spends many times for informing changes in main
office to all branches and vice versa. So, this
proposed system supports for organization to take the
most appropriate action informing the changes in
main office to all branches and actions in the branch
offices to main office within a minimum of time.
 Informing formally is often made based on human
resource and telephone rather than on the update
propagation methods in replication. This practice
leads to save time and human resources. The

integration of organization actions with computer-
based update propagation methods would improve
performance, increase availability, reliability and to
make it fault tolerance.

 The system could assist the business based
on replication. This paper is organized as follows:
Session 1 introduces the paper, Session 2 will discuss
the theoretical background, Session 3 will discuss the
two-phase commit protocol, the design and
implementation are presented in Session 4, Session 5
discusses the experimental results and Session 6
concludes the paper.

2. Theoretical Background

The background theory of Update
Propagation, Replication mechanisms, Eager
replication, Lazy replication, Master architecture,
Lazy Master, Eager Master and theoretical
comparison of Lazy Master and Eager Master are
represented in this section.

2.1 Update Propagation

 The basic problem with data replication is
that an update to any given logical object must be
propagated to all stored copies of that object. A
difficulty that arises immediately is that some site
holding a copy of the object might be unavailable
because of a site or network failure at the time of
update. The obvious strategy of propagation updates
immediately to all copies is thus probably
unacceptable, because it implies that the update
transaction will fail if any one of those copies is
currently unavailable. In fact, data is less available
under the strategy than it would be in the non-

replicated case.

2.2 Replication mechanisms’

 Replication is a technique for automatically
maintaining availability of data despite server

 2

failures. Replication techniques can be grouped into
two criteria:
i. When updates are propagated between
replicas. (Lazy or Eager)
ii. Where updates can be applied. (Centralized)

2.2.1 Eager and Lazy Replication

 With Eager replication, updates are
propagated to and processed by the replicas before
the transaction that generated the updates commits.
This means that transactions have to wait until
updates are installed at every replica. Transaction
processing in eager replication has been well suited
in several protocols such as Two-Phase commit
protocol for serialization. The benefit of this
mechanism is that conflicts occurring at replica are
detected before the original transaction commits.
Therefore there are no inconsistencies.

 In Lazy replication, each transaction
executes locally and then asynchronously sends its
updates to other replicas at some later time (user
defined time) after its commits. The replica at each
site is updated by a separate transaction. Since each
transaction executes locally and independently, the
systems do not require multi site commit protocol.
But inconsistencies between replicas are not detected
within transaction bounds.

2.3 Master Architecture (Primary Copy)

The number of directly updatable replicas
can be restricted to one single node in the system.
This approach is called primary copy, and avoids
concurrent updates on the same object at two
different nodes. Each transaction must send its
updates first to one dedicated site, the primary copy,
which takes care of propagating the updates. The
drawback of this technique is that the primary node
represents a hot spot in the system.

2.3.1 Lazy Master and Eager Master

Lazy Master scheme allows an update
transaction is first done at master site and then
propagated to all other slave replicas after the master
transaction commits. In this technique does not
require the primary copy to wait for the secondary. It
can commit or abort its transaction independently.
Therefore it may occur only local deadlocks. There
are no conflicts across the servers because there is
only one server executing the update transactions.

In Eager Master Scheme, an update
transaction is first done at master node and then

propagated to secondary before master transaction
commits. To ensure that both master and slaves
install the updates, we use Two-Phase Commit
protocol (2PC). In this case, master site initiates 2PC
protocol and master site is a coordinator site and the
slaves are participant sites. The master site waits for
the slave sites until the transaction ends. So it causes
long response times. There are no conflicts between
servers because there is one server executing update
transactions.

2.3.2 Comparison between Lazy Master
and Eager Master

The main comparison points between lazy
master and eager master are as shown in table 3.1.

Lazy Master Eager Master
Updates can be done at
master site.

Updated data is
propagated outside the
update transaction

This scheme cannot
guarantee data
consistencies

Updates are first done
at master site.

Updated data must be
propagated inside the
update transaction.

This scheme can
guarantee data
consistencies.

Table 2.1 Comparison of Lazy Master scheme and

Eager Master Scheme

2.4 Comparison of Propagation strategies
with Ownership strategy

 The comparison points of propagation
strategies with ownership strategies are as shown in
table 3.2.

Propagation

vs.
Ownership

Lazy Eager

Master

N transactions

One object
owner

One transaction

One object
owner

Table 2.2 Comparison of Propagation strategies

with Ownership strategy

 3

3. Two-Phase commit protocol (2PC)

Two-phase commit protocol (2PC) is
required to guarantee ACID properties in a
distributed environment. However, this means that
the sites are dependent on one another for completion
of an update, and they will give up site autonomy.

 In the first phase, the coordinator sends the
can Commit to the workers, which pass it on to the
other replica managers and collect their replicas
before replying to the coordinator.

 In the second phase, the coordinator sends
the do Commit or do Abort request, which is passed
on the members of the groups of replica mangers.

3.1 Nature of Lazy and Eager Scheme

 The nature of lazy and eager propagation
method is as shown in figure 3.1 and figure 3.2
respectively.

Figure 3.1 Sequence diagram of Lazy replication

Figure 3.2 Sequence diagram of Eager replication

4. Design and Implementation

This system composed with three databases:
one for Main office database; the other two are
Branch 1 office and Brach 2 office databases. The
overall system design can be see in Figure 4.1.

Figure 4.1 Proposed System Architecture

 In the Main database, there are six tables.
They are products, request, sent, salespersons,
customers and orders tables. In the Branch databases
(B1 and B1), there are four tables. They are products,
salespersons, customers and orders tables. Products
table is replicated at each site. And salespersons table
is replicated at main office and corresponding branch
office. Other tables are not replicated.

All data are handled by main office and then
propagate to all other branch offices using lazy or
eager method according to the situations.

4.2 Process Flow of Master Site

 In the main office (Master site), there is an
administrator. At the start of the process, the
administrator can choose the desired command
(Select, Insert, Update, Delete). If the administrator
choose the query (Select), read at the local database
and show the result on the display. Otherwise, the
administrator choose the other command, set value
for the chosen command and write firstly at the local
database and then propagate to the remote database
using specified propagation strategies.
 If the product price data is updated at main
office, then the changed price data need to be
propagated to all other branch offices immediately.
Therefore, in this situation eager method is used.
Because of using the eager method, two-phase
commit protocol is applied at this portion. And other
changed data is propagated using the lazy method.
The process flow of master site is represented in
figure 4.2.

 M

B1 B2

Update

Propagate

Propagate

Read

Read

 :Transaction

:Master Database

Administrator

Commit

Set Value

Do Update

Write (a)

 [Timer==t]
Propagate (a)

 : Transaction

: Master Database

Administra

Commit

Set Value

Do Update ()

Write (a)
Propagate(a)

OK

 : Remote Database

: Remote Database

 4

4.3 Process Flow of Slave Site

For the slave site point of view, the system
divided into three parts. They are order processing for
part (a) and request processing for part (b) and view
processing for part (c). At the branch offices, user can
choose order, request or view commands. If the view
request (select statement) is chosen, read at the local
database and show the result on the screen. The
diagram of view processing is presented in figure
4.3(a).

 If the order command is chose, sell products

to the customer and then update (update statement)
the local database. After some time later, the orders
are propagated to the remote database (main office
database) using the eager method. The diagram of
order processing is presented in figure 4.3(b).

Fig 4.2 Process Flow Diagram of Master Site

Figure 4.3(a) View Process Flow Diagram of Slave Site

 Figure 4.3(b) Order Process Flow Diagram of Slave Site

Start

 Admin Choice

Update or
Query

Write at Local DB

 Set Value

Propagate to Remote DB

 End

 Local

Remote

 Read at Local DB Show
Result

 Start

User Choice for order

Sale Product to customer

Update Local
database

Local
Database

Propagate to
Remote database Remote

Database

 End

 Start

 User Choice for view

Read at Local
Database

Local
Database

Show
Result

 End

 5

If the request command is chosen, request
product to the master site and check whether or not
the requested product is arrived at the branch office.
The process flow of request is presented in figure
4.3(c).

5. Benefits of proposed system

By implementing update propagation with
Eager replication on master architecture, the
proposed system can get correct and consistent data.
For example, in a global banking system, exchange
rates are replicated. It is crucial to have fast access to
this replicated data from any bank sites.

 By implementing update propagation with
Lazy Master scheme, the proposed system ensures
that product price information is always available and
relatively current and consistent at all sites. So, this
scheme is more suitable for data distribution system.

6. Conclusion

With organization supporting diverse
hardware and software applications in distributed
environments, it becomes necessary to restore data
redundantly. Moreover, different applications have
different needs for autonomy and data consistency.
Replication is a solution for a distributed data

environment. The aim of this paper is to study the
nature of update propagation strategies in replication
environment. Proposed system discusses update
propagation on lazy and eager replication with master
architecture.

References

[1] C.J Date “An Introduction to Database

Systems” International Edition, May 2000.
[2] Nike Simpson “Data Replication for Critical

Storage Assets” www.datacore.com
[3] Bettina and Gustavo Alonso “A New Approach

to Developing and Implementing Eager
Database Replication Protocols.”

[4] K. Daudjee, K. Salem University of Waterloo
“Lazy Database Replication with Snapshot
Isolation”

[5] J.Gray, P.Helland, P.O’Neil, and D.Shasha.
“The Danger of Replications and a Solution”
SIGMOD, 1996

[6] Nick Blundell. “Replication for Scalability and
Fault-Tolerance” Distributed Systems School of
Computer Science, University of Birminghan,
UK

[7] Y.Breitbast, R.Komondoor, R.Rastigi,
S.Seshadri “Update Propagation Protocols for
Replicated Database” SIGMOD 1999

Figure 4.3(c) Request Process Flow Diagram of Slave Site

 Start

 User Choice for request

Request Product
to Master site

Receive Product
from Master site

 View Product

 End

